

Risques climatiques et économiques

PRICE CAPS AND PRICE FLOORS IN CLIMATE POLICY

A Quantitative Assessment

IEA INFORMATION PAPER including a French version of the Executive Summary

Cédric Philibert

Séminaire Développement Durable et Economie de l'Environnement

Sciences-Po, 19 Janvier 2010

CEDRIC PHILIBERT INTERNATIONAL ENERGY AGENCY © OECD/IEA, December 2008

Les opinions exprimées ne représentent pas nécessairement celles du Secrétariat de l'AIE ou des pays membres. © OECD/IEA 2010

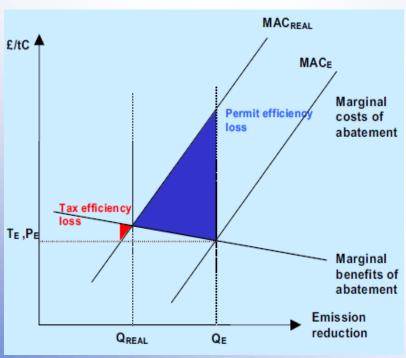
INTERNATIONAL ENERGY AGENCY

AGENCE INTERNATIONALE DE L'ENERGIE

Introduction

- Les objectifs d'émissions de gaz à effet de serre visent à réduire les risques climatiques
- Mais ils créent des risques économiques
 - ◆ Les coûts de réduction sont inconnus
- Des corridors de prix réduisent les risques économiques...
 - Peuvent aider à engager davantage de pays dans l'action et accepter des politiques plus ambitieuses
- …en basculant l'incertitude sur les émissions
 - Nous allons voir que cette incertitude N'ACCROÎT PAS les risques climatiques!

Contexte théorique


- Weitzman, 1974: "Prix vs. quantités"
 - Coûts incertains: les instruments quantité sont préférables si la pente des bénéfices marginaux est plus forte que celle des coûts.
- Roberts and Spence, 1976: Instruments hybrides
 - Instruments hybrides supérieurs aux instruments purs
- Stavins, 1996: corrélations entre incertitudes
 - Corrélation positive (resp: negative) entre incertitudes sur coûts et sur bénéfices tend à favoriser l'instrument quantité (resp: prix)
 - Cas du changement climatique: peut s'appliquer aux croyances...
- Pizer, 2002, 2003: Cas du changement climatique
 - ◆ Taxes meilleures que permis changement induit par concentrations
 - Possible catastrophe renverse la conclusion si le seuil est connu
- Newell & Pizer, 2003: Pollutions de stock
 - Taxes généralement préférables aux permis

Le schéma de Weitzman...

... appliqué au CC par N. Stern

Court terme

Long terme

Marginal £/tC benefits of abatement Tax efficiency loss MACREAL MACE Permit efficiency loss T_E, P_E Marginal costs of abatement QREAL QE Emission reduction

Prix préférés

Quantités préférées

Stern Review: The Economics of Climate Change, Part IV, pp. 313-314

Méthodologie

- Calculer les coûts attendus des objectifs
 - Modèle calibré sur le 4ème rapport du GIEC, le World Energy Outlook 2007 et le rapport de l'AIE Energy Technology Perspectives 2008
 - Prendre pleinement en compte l'incertitude grâce aux simulations Monte Carlo
- Evaluer les effets des corridors de prix
 - Sur l'économie: coûts attendus
 - Sur le climat, via les émissions et concentrations
- Dans cette présentation, comme dans l'article paru dans Climate Policy en novembre 2009, les changements de température irréversiblement engagés en 2100 sont évalués (vs. delta-T engagé en 2050 dans le rapport AIE de décembre 2008)

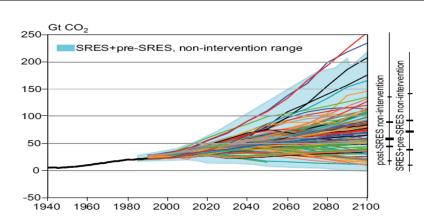
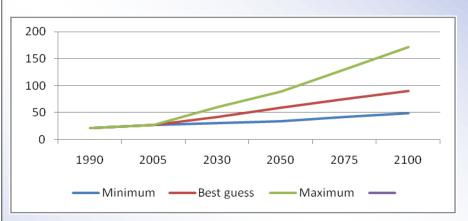
Le modèle ACTC

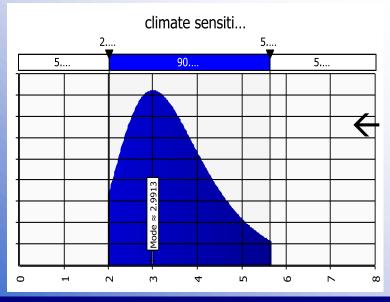
- Un modèle mondial agrégé de l'économie et des émissions de CO₂ dues à la combustion des fossiles
- Diviser par deux les émissions mondiales en 2050
 - Les leaders du G8 d'accord pour 'partager cet objectif avec toutes les Parties de la FCCC-NU' (2008)
 - Depuis les niveaux de 1990 ou ceux de 2005
- Quatre périodes de dix ans
- Une trajectoire optimale d'émissions jusqu'en 2050
 - ◆ Selon les « meilleures estimations » des coûts
 - Avec un taux d'actualisation de 5%
- Coût de réduction des émissions tirées de l'AIE
- Pour cette présentation, hypothèse supplémentaire d'élimination des émissions avant 2100

Tendances d'émissions CO2

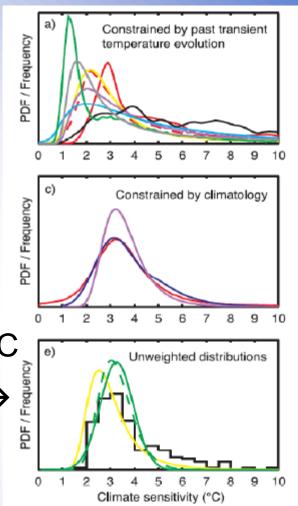
GIEC, émissions de CO₂ liées à l'énergie et industrielles

Modèle ACTC, émissions de CO₂ liées à l'énergie

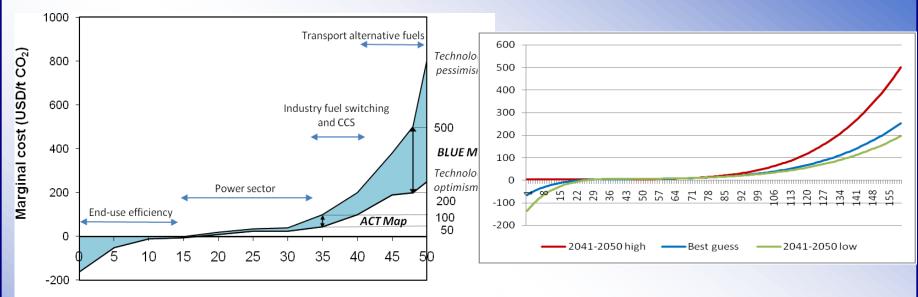




Figure TS.7: Comparison of the SRES and pre-SRES energy-related and industrial CO₂ emission scenarios in the literature with the post-SRES scenarios [Figure 3.8].

Note: Two vertical bars on the right extend from the minimum to maximum of the distribution of scenarios and indicate the 5th, 25th, 50th, 75th and the 95th percentiles of the distributions by 2100.


Le réchauffement global (Delta-T)

- Irréversible, référence niveau pré-industriel
- 60% du CO₂ émis reste dans l'atmosphère
- $\Delta T = s * LOG(C/275)/LOG2$

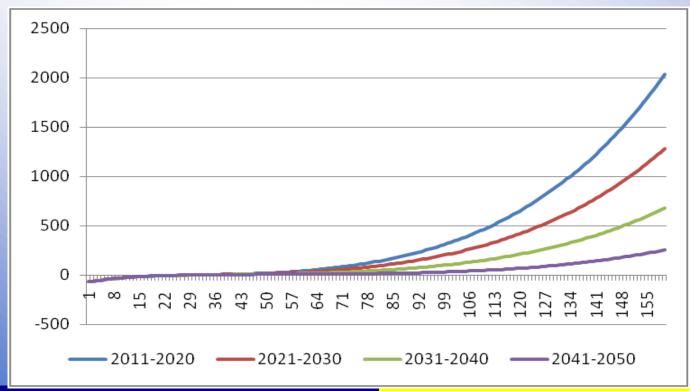


Modèle ACTC

GIEC AR4 →

Les coûts d'abatement

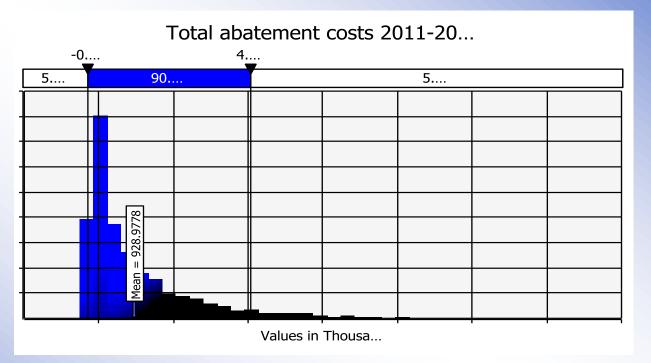
2050 CO₂ emissions reduction (Gt CO₂/yr)


ETP 2008

Modèle ACTC

Des réductions annuelles en 2050 aux réductions décennales de 2011 à 2050: on multiplie par dix et on divise par 4... (en gros)

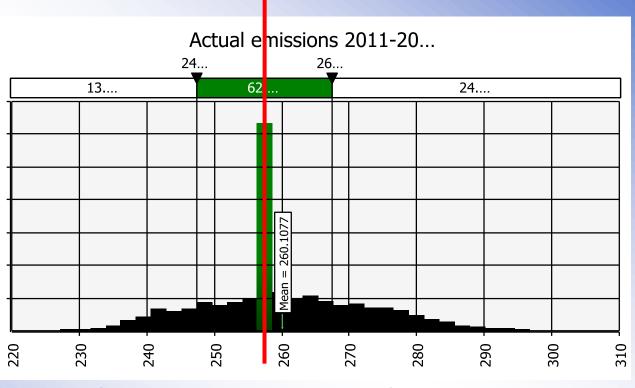
Le progrès technique


- Réduit progressivement les coûts
- Coût marginaux ajusté sur les potentiels de réduction du GIEC AR4 2020 et 2030

Objectifs intermédiaires

	2011- 2020	2021- 2030	2031- 2040	2041- 2050	Total
Référence 2005	95%	86.3%	76%	50%	
Cap (Gt CO ₂)	258	234	206	136	834
Coût marginal	67	101	158	252	
Coût total (bn \$)	350	1 119	3 002	6 575	2 754 (VAN)

Le poids des incertitudes (3000 simulations Monte-Carlo)

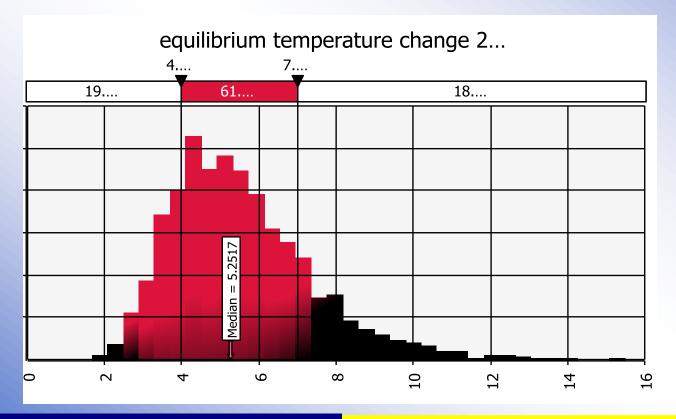

Objectif mondial pour 2011-2020: 95% des émissions de 2005. Les simulations révèlent des 'coûts attendus' plus élevés en incertitude: 929 G\$ (US) vs. 350 G\$ avec les 'meilleures estimations'

Prix plafonds et planchers

- Prix plafond: un prix payé à la fin de la période d'engagement pour les émissions au-delà de l'objectif
 - prix défini dès le départ
 - protège les consommateurs contre le risque de prix trop élevés
- Prix plancher: un prix de réserve (minimum) lors des enchères périodiques
 - protège les investisseurs dans les techniques propres contre le risque de prix trop bas

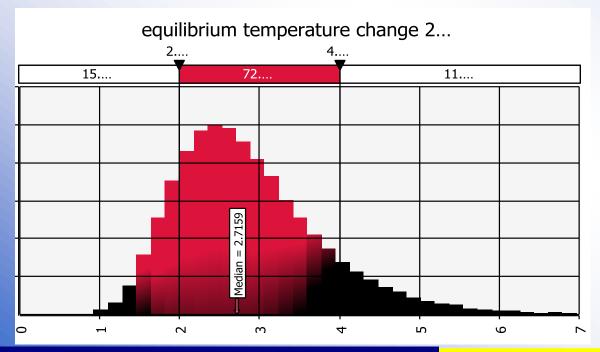
Prix plafonds et planchers en 2011-2020

Objectif:95% desémissions2005(257,835 Gten 10 ans)



- Avec un plafond 80\$ et un plancher 40\$, les coûts attendus passent de 929 à 297 G\$ (US)
- Emissions moyennes excèdent l'objectif de 0,4 Gt CO₂

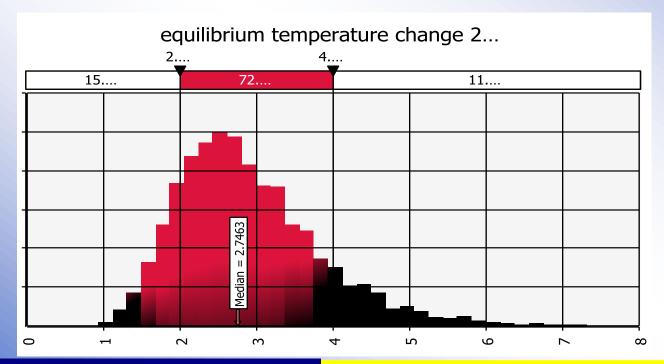
Les effets à long terme


Ne rien faire

- 662 –1067 ppm CO₂en 2100
- Delta-T irréversible 5.25°C en 2100

Emissions 2050 ½ niveau 2005

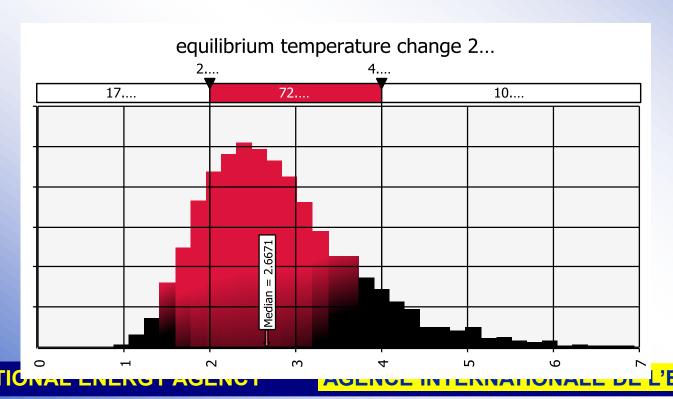
- Coûts actualisés 7 885 G\$ (US)
- 479 484 ppm CO₂ en 2100
- Delta-T irréversible 2.72°C en 2100



Objectifs 'certains'.
L'incertitude reflète surtout la l'incertitude sur la sensibilité climatique

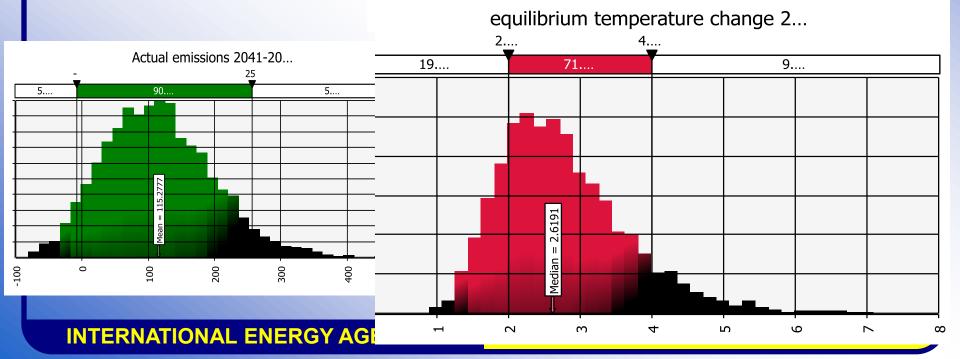
Prix plafonds et planchers

(\$ 80 en 2011 à \$ 260 en 2041, planchers 1/2)

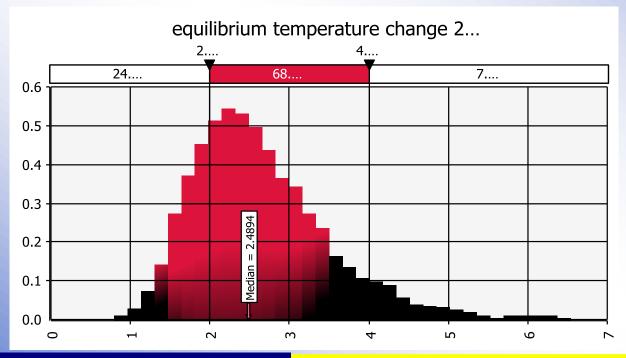

- Coûts actualisés 2 292 G\$ (US)
- 441 528 ppm CO₂ en 2100
- Delta-T irréversible 2.75°C en 2100

Emissions 2050 ½ niveau 1990

(Mêmes prix plafonds et planchers)

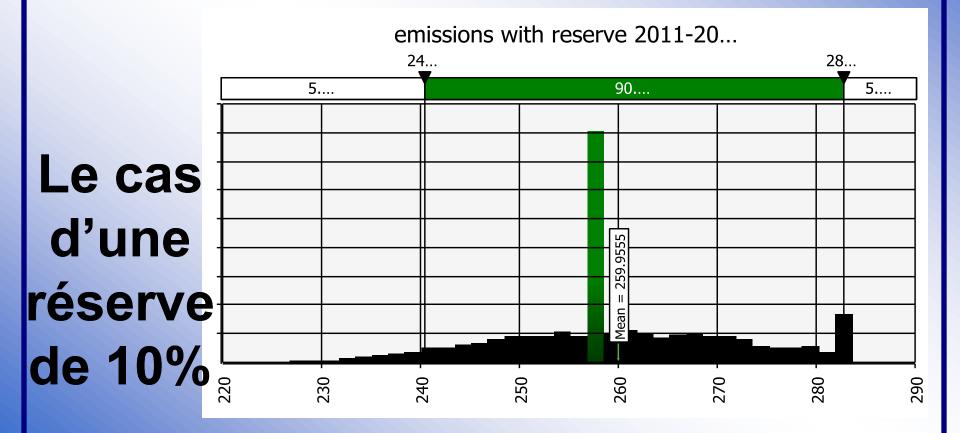

- Coûts actualisés 2 553 G\$ (US)
- 443 525 ppm CO₂ en 2100
- Delta-T irréversible 2.69°C en 2100

Une quasi-taxe


Prix plafonds et planchers fixés sur coûts marginaux division par deux niveau 1990 en 2050

- Coûts actualisés 4 212 G\$ (US)n
- Concentration CO₂ 423 530 ppm en 2100
- Changement température 2.62°C en 2100

1/4 émissions 1990 en 2050 (\$ 150 en 2011 à \$ 600 en 2041, planchers 1/3)


- Coûts actualisés 6 762 G\$ (US)
- Concentration CO₂ 440 498 ppm en 2100
- Changement température 2.49°C en 2100

Politique	Objectif 2050 Plafonds Planchers	Coûts 2011- 2050 (VAN) <i>Min -AvMax en</i>	Réchauffement engagé en 2100			
	(2011 à 2050)		ppm	°C (médiane)	% chances <2°c <4°C	
1: Moitié niveau 2005	13,6 Gt CO ₂	7 885 G\$ 0-0,4-5,5	479 484	2,71	15,8	88,8
Moitié 2005 + prix plafonds et planchers	13,6 Gt CO₂ \$80 à \$260 \$40 à \$130	2 292 G\$ <i>0</i> – <i>0,12</i> – <i>0,1</i> 9	441 528	2,75	15,3	88,1
Moitié 1990 + prix plafonds et planchers	10,5 Gt CO₂ \$80 à \$260 \$40 à \$130	2 553 G\$ 0-0,13-0,2	443 525	2,69	16,8	89,4
Quasi taxe (moitié 1990)	(10.5 Gt CO ₂) \$88 à \$342 \$87 à \$341	4 212 G\$ 0-0,2-0,3	423 530	2,62	19,3	90,5
Plus ambitieux!	5,26 Gt CO₂ \$150 à \$600 \$ 50 à \$200	6 762 G\$ <i>0</i> – <i>0</i> ,35– <i>0</i> ,5	440 498	2,49	24.1	92,7

Une réserve de permis?

RE: Murray, Newell & Pizer, 2008 (plutôt que les projets Waxman-Markey/Boxer-Kerry)

Politique suivie	Prix plafond Prix plancher	Coûts actualisés	Delta-T irréversible en 2100 (médiane)		
Objectifs	-	7 885 G\$	2,72°C		
Réserve de permis 10%	\$ 80 to 260 \$ 40 to 130	6 282 G\$	2,71°C		
Réserve de 10% à 25%	\$ 80 to 260 \$ 40 to 130	5 122 G\$	2,72°C		
Objectif plus ambitieux, planchers/plafonds	\$ 80 to 260 \$ 40 to 130	2 553 G\$	2,69°C		
INTERNATIONAL EN	ERGY AGENCY	AGENCE INTERNATIONALE DE L'ENERGIE			

Conclusions

- En tout cas, agir!
- Des objectifs plus ambitieux avec prix plafonds et planchers sont, par comparaison avec des objectifs fixes:
 - moins risqués économiquement (beaucoup)
 - meilleurs pour le climat (un peu)
 - Si les niveaux des prix plafonds et planchers sont cohérents avec l'ambition de la politique climatique
- Fixer des objectifs ambitieux compte davantage qu'obtenir une certitude sur les niveaux d'émissions

Conclusions (2)

- Ou encore: « Mieux vaut viser approximativement juste plutôt qu'aller précisément dans le mur!
- Le demi-succès de Copenhague invite à repenser la politique climatique
- Emmanual Kant disait: « On mesure l'intelligence d'un individu à la quantité d'incertitudes qu'il est capable de supporter ». N'en va-t-il pas de même pour une politique?

Travail futur possible

- Intégrer les autres GES dans l'analyse
- Analyser la mise en œuvre pratique des prix planchers et plafonds
- Evaluer l'impact d'une réduction de la volatilité des prix sur les investisseurs
- Evaluer les effets sur la dynamique des négociations climatiques

www.iea.org; cedric.philibert@iea.org